Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Blood ; 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38446568

RESUMEN

Biallelic mutation in the DNA-damage repair gene NBN is the genetic cause of Nijmegen Breakage Syndrome, which is associated with predisposition to lymphoid malignancies. Heterozygous carriers of germline NBN variants may also be at risk for leukemia development, although this is much less characterized. Sequencing 4,325 pediatric B-ALL patients, we systematically examined the frequency of germline NBN variants and identified 25 unique, putatively damaging NBN coding variants in 50 patients. Compared with the frequency of NBN variants in gnomAD non-cancer controls (189 unique, putatively damaging NBN coding variants in 472 of 118,479 individuals) we found significant overrepresentation in pediatric B-ALL (p=0.004, OR=1.8). Most B-ALL-risk variants were missense and cluster within the NBN N-terminal domains. Using two functional assays, we verified 14 of 25 variants with severe loss-of-function phenotypes and thus classified these as non-functional or partially functional. Finally, we found that germline NBN variant carriers, all of which were identified as heterozygous genotypes, showed similar survival outcomes relative to those with WT status. Taken together, our findings provide novel insights into the genetic predisposition to B-ALL, and the impact of NBN variants on protein function and suggest that heterozygous NBN variant carriers may safely receive B-ALL therapy.

2.
STAR Protoc ; 5(1): 102874, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38310512

RESUMEN

Immunophenotyping of out-of-hospital cardiac arrest (OHCA) patients is of increasing interest but has challenges. Here, we describe steps for the design of the clinical cohort, planning patient enrollment and sample collection, and ethical review of the study protocol. We detail procedures for blood sample collection and cryopreservation of peripheral blood mononuclear cells (PBMCs). We detail steps to modulate immune checkpoints in OHCA PBMC ex vivo. This protocol also has relevance for immunophenotyping other types of critical illness. For complete details on the use and execution of this protocol, please refer to Tamura et al. (2023).1.


Asunto(s)
Leucocitos Mononucleares , Paro Cardíaco Extrahospitalario , Humanos , Inmunofenotipificación , Paro Cardíaco Extrahospitalario/diagnóstico , Criopreservación
3.
Biomed Rep ; 19(6): 102, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38025835

RESUMEN

Sepsis-induced acute lung injury (ALI) is related to the dysregulation of inflammatory responses. Polydatin supplement was reported to exhibit anti-inflammatory effects in several diseases. The present study aimed to investigate the role of polydatin in sepsis-induced ALI. A cecum ligation and puncture (CLP)-induced mouse ALI model was established first and the pathological changes of lung tissues were assessed using hematoxylin and eosin staining. Meanwhile, to mimic sepsis-induced ALI in vitro, pulmonary microvascular endothelial cells (PMVECs) were treated with lipopolysaccharide (LPS). Pro-inflammatory cytokines levels were measured in lung tissues and PMVECs using ELISA. Reverse transcription-quantitative PCR was used to measure the mRNA levels of Spi-B in lung tissues and PMVECs. Moreover, the expression levels of Spi-B, p-PI3K, p-Akt, and p-NF-κB in lung tissues and PMVECs were determined using western blotting. The data revealed that polydatin attenuated CLP-induced lung injury and inhibited sepsis-induced inflammatory responses in mice. Furthermore, polydatin significantly inhibited the expression of Spi-B, p-PI3K, p-Akt, and p-NF-κB in lung tissues of mice subjected to CLP-induced ALI, while this phenomenon was reversed through Spi-B overexpression. Consistently, the anti-inflammatory effect of polydatin was abolished by Spi-B overexpression. Taken together, the current findings revealed that polydatin alleviated sepsis-induced ALI via the downregulation of Spi-B.

4.
Front Oncol ; 13: 1229507, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37869077

RESUMEN

Replication Protein A (RPA) is single-strand DNA binding protein that plays a key role in the replication and repair of DNA. RPA is a heterotrimer made of 3 subunits - RPA1, RPA2, and RPA3. Germline pathogenic variants affecting RPA1 were recently described in patients with Telomere Biology Disorders (TBD), also known as dyskeratosis congenita or short telomere syndrome. Premature telomere shortening is a hallmark of TBD and results in bone marrow failure and predisposition to hematologic malignancies. Building on the finding that somatic mutations in RPA subunit genes occur in ~1% of cancers, we hypothesized that germline RPA alterations might be enriched in human cancers. Because germline RPA1 mutations are linked to early onset TBD with predisposition to myelodysplastic syndromes, we interrogated pediatric cancer cohorts to define the prevalence and spectrum of rare/novel and putative damaging germline RPA1, RPA2, and RPA3 variants. In this study of 5,993 children with cancer, 75 (1.25%) harbored heterozygous rare (non-cancer population allele frequency (AF) < 0.1%) variants in the RPA heterotrimer genes, of which 51 cases (0.85%) had ultra-rare (AF < 0.005%) or novel variants. Compared with Genome Aggregation Database (gnomAD) non-cancer controls, there was significant enrichment of ultra-rare and novel RPA1, but not RPA2 or RPA3, germline variants in our cohort (adjusted p-value < 0.05). Taken together, these findings suggest that germline putative damaging variants affecting RPA1 are found in excess in children with cancer, warranting further investigation into the functional role of these variants in oncogenesis.

5.
Lancet Oncol ; 24(10): 1147-1156, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37797633

RESUMEN

BACKGROUND: Carriers of cancer predisposing variants are at an increased risk of developing subsequent malignant neoplasms among those who have survived childhood cancer. We aimed to investigate whether cancer predisposing variants contribute to the risk of subsequent malignant neoplasm-related late mortality (5 years or more after diagnosis). METHODS: In this analysis, data were included from two retrospective cohort studies, St Jude Lifetime Cohort (SJLIFE) and the Childhood Cancer Survivor Study (CCSS), with prospective follow-up of patients who were alive for at least 5 years after diagnosis with childhood cancer (ie, long-term childhood cancer survivors) with corresponding germline whole genome or whole exome sequencing data. Cancer predisposing variants affecting 60 genes associated with well-established autosomal-dominant cancer-predisposition syndromes were characterised. Subsequent malignant neoplasms were graded using the National Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE) version 4.03 with modifications. Cause-specific late mortality was based on linkage with the US National Death Index and systematic cohort follow up. Fine-Gray subdistribution hazard models were used to estimate subsequent malignant neoplasm-related late mortality starting from the first biospecimen collection, treating non-subsequent malignant neoplasm-related deaths as a competing risk, adjusting for genetic ancestry, sex, age at diagnosis, and cancer treatment exposures. SJLIFE (NCT00760656) and CCSS (NCT01120353) are registered with ClinicalTrials.gov. FINDINGS: 12 469 (6172 male and 6297 female) participants were included, 4402 from the SJLIFE cohort (median follow-up time since collection of the first biospecimen 7·4 years [IQR 3·1-9·4]) and 8067 from the CCSS cohort (median follow-up time since collection of the first biospecimen 12·6 years [2·2-16·6]). 641 (5·1%) of 12 469 participants carried cancer predisposing variants (294 [6·7%] in the SJLIFE cohort and 347 [4·3%] in the CCSS cohort), which were significantly associated with an increased severity of subsequent malignant neoplasms (CTCAE grade ≥4 vs grade <4: odds ratio 2·15, 95% CI 1·18-4·19, p=0·0085). 263 (2·1%) subsequent malignant neoplasm-related deaths (44 [1·0%] in the SJLIFE cohort; and 219 [2·7%] in the CCSS cohort) and 426 (3·4%) other-cause deaths (103 [2·3%] in SJLIFE; and 323 [4·0%] in CCSS) occurred. Cumulative subsequent malignant neoplasm-related mortality at 10 years after the first biospecimen collection in carriers of cancer predisposing variants was 3·7% (95% CI 1·2-8·5) in SJLIFE and 6·9% (4·1-10·7) in CCSS versus 1·5% (1·0-2·1) in SJLIFE and 2·1% (1·7-2·5) in CCSS in non-carriers. Carrying a cancer predisposing variant was associated with an increased risk of subsequent malignant neoplasm-related mortality (SJLIFE: subdistribution hazard ratio 3·40 [95% CI 1·37-8·43]; p=0·0082; CCSS: 3·58 [2·27-5·63]; p<0·0001). INTERPRETATION: Identifying participants at increased risk of subsequent malignant neoplasms via genetic counselling and clinical genetic testing for cancer predisposing variants and implementing early personalised cancer surveillance and prevention strategies might reduce the substantial subsequent malignant neoplasm-related mortality burden. FUNDING: American Lebanese Syrian Associated Charities and US National Institutes of Health.


Asunto(s)
Supervivientes de Cáncer , Neoplasias , Niño , Humanos , Masculino , Femenino , Neoplasias/patología , Estudios Retrospectivos , Estudios de Seguimiento , Estudios Prospectivos , Factores de Riesgo
6.
Cells ; 12(15)2023 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-37566049

RESUMEN

Single-cell RNA sequencing (scRNA-seq) has emerged as a powerful tool for investigating cellular biology at an unprecedented resolution, enabling the characterization of cellular heterogeneity, identification of rare but significant cell types, and exploration of cell-cell communications and interactions. Its broad applications span both basic and clinical research domains. In this comprehensive review, we survey the current landscape of scRNA-seq analysis methods and tools, focusing on count modeling, cell-type annotation, data integration, including spatial transcriptomics, and the inference of cell-cell communication. We review the challenges encountered in scRNA-seq analysis, including issues of sparsity or low expression, reliability of cell annotation, and assumptions in data integration, and discuss the potential impact of suboptimal clustering and differential expression analysis tools on downstream analyses, particularly in identifying cell subpopulations. Finally, we discuss recent advancements and future directions for enhancing scRNA-seq analysis. Specifically, we highlight the development of novel tools for annotating single-cell data, integrating and interpreting multimodal datasets covering transcriptomics, epigenomics, and proteomics, and inferring cellular communication networks. By elucidating the latest progress and innovation, we provide a comprehensive overview of the rapidly advancing field of scRNA-seq analysis.


Asunto(s)
Comunicación Celular , Análisis de Expresión Génica de una Sola Célula , Reproducibilidad de los Resultados , Comunicación Celular/genética , Análisis por Conglomerados , Epigenómica
7.
Nat Commun ; 14(1): 4003, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37414763

RESUMEN

A lack of relevant genetic models and cell lines hampers our understanding of hepatoblastoma pathogenesis and the development of new therapies for this neoplasm. Here, we report an improved MYC-driven hepatoblastoma-like murine model that recapitulates the pathological features of embryonal type of hepatoblastoma, with transcriptomics resembling the high-risk gene signatures of the human disease. Single-cell RNA-sequencing and spatial transcriptomics identify distinct subpopulations of hepatoblastoma cells. After deriving cell lines from the mouse model, we map cancer dependency genes using CRISPR-Cas9 screening and identify druggable targets shared with human hepatoblastoma (e.g., CDK7, CDK9, PRMT1, PRMT5). Our screen also reveals oncogenes and tumor suppressor genes in hepatoblastoma that engage multiple, druggable cancer signaling pathways. Chemotherapy is critical for human hepatoblastoma treatment. A genetic mapping of doxorubicin response by CRISPR-Cas9 screening identifies modifiers whose loss-of-function synergizes with (e.g., PRKDC) or antagonizes (e.g., apoptosis genes) the effect of chemotherapy. The combination of PRKDC inhibition and doxorubicin-based chemotherapy greatly enhances therapeutic efficacy. These studies provide a set of resources including disease models suitable for identifying and validating potential therapeutic targets in human high-risk hepatoblastoma.


Asunto(s)
Hepatoblastoma , Neoplasias Hepáticas , Humanos , Animales , Ratones , Hepatoblastoma/tratamiento farmacológico , Hepatoblastoma/genética , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Línea Celular , Oncogenes , Proteína-Arginina N-Metiltransferasas/genética , Proteínas Represoras/genética
8.
Res Sq ; 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37503171

RESUMEN

Biallelic mutation in the DNA-damage repair gene NBN is the genetic cause of Nijmegen Breakage Syndrome, which is associated with predisposition to lymphoid malignancies. Heterozygous carriers of germline NBN variants may also be at risk for leukemia development, although this is much less characterized. We systematically examined the frequency of germline NBN variants in pediatric B-ALL and identified 25 putatively damaging NBN coding variants in 50 of 4,183 B-ALL patients. Compared with the frequency of NBN variants in 118,479 gnomAD non-cancer controls we found significant overrepresentation in pediatric B-ALL (p=0.004, OR=1.77). Most B-ALL-risk variants were missense and cluster within the NBN N-terminal domains. Using two functional assays, we verified 14 of 25 variants with severe loss-of-function phenotypes and thus classified these as pathogenic or likely pathogenic. Finally, we found that heterozygous germline NBN variant carriers showed similar survival outcomes relative to those with WT status. Taken together, our findings provide novel insights into the genetic predisposition to B-ALL, the impact of NBN variants on protein function and suggest that heterozygous NBN variant carriers may safely receive B-ALL therapy.

9.
Med ; 4(7): 432-456.e6, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37257452

RESUMEN

BACKGROUND: Most patients hospitalized after cardiac arrest (CA) die because of neurological injury. The systemic inflammatory response after CA is associated with neurological injury and mortality but remains poorly defined. METHODS: We determine the innate immune network induced by clinical CA at single-cell resolution. FINDINGS: Immune cell states diverge as early as 6 h post-CA between patients with good or poor neurological outcomes 30 days after CA. Nectin-2+ monocyte and Tim-3+ natural killer (NK) cell subpopulations are associated with poor outcomes, and interactome analysis highlights their crosstalk via cytokines and immune checkpoints. Ex vivo studies of peripheral blood cells from CA patients demonstrate that immune checkpoints are a compensatory mechanism against inflammation after CA. Interferon γ (IFNγ)/interleukin-10 (IL-10) induced Nectin-2 on monocytes; in a negative feedback loop, Nectin-2 suppresses IFNγ production by NK cells. CONCLUSIONS: The initial hours after CA may represent a window for therapeutic intervention in the resolution of inflammation via immune checkpoints. FUNDING: This work was supported by funding from the American Heart Association, Brigham and Women's Hospital Department of Medicine, the Evergreen Innovation Fund, and the National Institutes of Health.


Asunto(s)
Citocinas , Transcriptoma , Estados Unidos , Humanos , Femenino , Citocinas/farmacología , Nectinas/genética , Células Asesinas Naturales , Inflamación
10.
Blood ; 142(8): 711-723, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37216686

RESUMEN

Intrachromosomal amplification of chromosome 21 defines a subtype of high-risk childhood acute lymphoblastic leukemia (iAMP21-ALL) characterized by copy number changes and complex rearrangements of chromosome 21. The genomic basis of iAMP21-ALL and the pathogenic role of the region of amplification of chromosome 21 to leukemogenesis remains incompletely understood. In this study, using integrated whole genome and transcriptome sequencing of 124 patients with iAMP21-ALL, including rare cases arising in the context of constitutional chromosomal aberrations, we identified subgroups of iAMP21-ALL based on the patterns of copy number alteration and structural variation. This large data set enabled formal delineation of a 7.8 Mb common region of amplification harboring 71 genes, 43 of which were differentially expressed compared with non-iAMP21-ALL ones, including multiple genes implicated in the pathogenesis of acute leukemia (CHAF1B, DYRK1A, ERG, HMGN1, and RUNX1). Using multimodal single-cell genomic profiling, including single-cell whole genome sequencing of 2 cases, we documented clonal heterogeneity and genomic evolution, demonstrating that the acquisition of the iAMP21 chromosome is an early event that may undergo progressive amplification during disease ontogeny. We show that UV-mutational signatures and high mutation load are characteristic secondary genetic features. Although the genomic alterations of chromosome 21 are variable, these integrated genomic analyses and demonstration of an extended common minimal region of amplification broaden the definition of iAMP21-ALL for more precise diagnosis using cytogenetic or genomic methods to inform clinical management.


Asunto(s)
Cromosomas Humanos Par 21 , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Niño , Cromosomas Humanos Par 21/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Aberraciones Cromosómicas , Citogenética , Genómica , Factor 1 de Ensamblaje de la Cromatina/genética
12.
Blood ; 141(11): 1293-1307, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35977101

RESUMEN

Familial aggregation of Hodgkin lymphoma (HL) has been demonstrated in large population studies, pointing to genetic predisposition to this hematological malignancy. To understand the genetic variants associated with the development of HL, we performed whole genome sequencing on 234 individuals with and without HL from 36 pedigrees that had 2 or more first-degree relatives with HL. Our pedigree selection criteria also required at least 1 affected individual aged <21 years, with the median age at diagnosis of 21.98 years (3-55 years). Family-based segregation analysis was performed for the identification of coding and noncoding variants using linkage and filtering approaches. Using our tiered variant prioritization algorithm, we identified 44 HL-risk variants in 28 pedigrees, of which 33 are coding and 11 are noncoding. The top 4 recurrent risk variants are a coding variant in KDR (rs56302315), a 5' untranslated region variant in KLHDC8B (rs387906223), a noncoding variant in an intron of PAX5 (rs147081110), and another noncoding variant in an intron of GATA3 (rs3824666). A newly identified splice variant in KDR (c.3849-2A>C) was observed for 1 pedigree, and high-confidence stop-gain variants affecting IRF7 (p.W238∗) and EEF2KMT (p.K116∗) were also observed. Multiple truncating variants in POLR1E were found in 3 independent pedigrees as well. Whereas KDR and KLHDC8B have previously been reported, PAX5, GATA3, IRF7, EEF2KMT, and POLR1E represent novel observations. Although there may be environmental factors influencing lymphomagenesis, we observed segregation of candidate germline variants likely to predispose HL in most of the pedigrees studied.


Asunto(s)
Enfermedad de Hodgkin , Humanos , Adulto Joven , Adulto , Enfermedad de Hodgkin/genética , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Codón sin Sentido , Secuenciación Completa del Genoma , Linaje , Proteínas de Ciclo Celular/genética
13.
Acupunct Med ; 41(4): 235-245, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36046956

RESUMEN

OBJECTIVE: Neuroinflammation caused by traumatic brain injury (TBI) can lead to neurological deficits. Acupuncture can inhibit neuroinflammation and promote nerve repair; however, the specific mechanism is still unclear. The purpose of this study was to explore whether acupuncture could modulate the M1 and M2 phenotypic polarization of microglia in a rat model of TBI via the toll-like receptor 4 (TLR4)/intracellular toll-interleukin-1 receptor (TIR) domain-containing adaptor inducing interferon-ß (TRIF)/myeloid differentiation factor 88 (MyD88) pathway. METHODS: A total of 90 adult male Sprague-Dawley (SD) rats, SPF grade, were randomly divided into a normal group, model group and acupuncture group. Each group was further divided into three subgroups (first, third, and fifth day groups) according to the treatment time (n = 10 rats/subgroup). We used the modified neurological severity score (mNSS) method to quantify neurological deficits before and after modeling. We used Nissl staining to observe the pathological changes in brain tissue, flow cytometry to detect the proportion of M1 and M2 polarized microglia in the injured area on the first, third and fifth day, and co-immunoprecipitation (Co-IP) to examine TLR4/TRIF/MyD88 expression in microglia on the first, third and fifth day, as well as expression of the amount of binding of TLR4 with TRIF and MyD88. RESULTS: Compared to the model group, mNSS in the acupuncture group gradually decreased and pathological morphology improved. The proportion of CD11b/CD86 positive cells was decreased, while that of CD11b/CD206 was increased in the acupuncture group. Expression of IP TLR4, IP TRIF and IP MyD88 also decreased in the acupuncture group. CONCLUSION: The results of this study demonstrate that one of the mechanisms through which acupuncture mitigates neuroinflammation and promotes nerve repair in TBI rats may be inhibition of M1 phenotypic polarization and promotion of M2 phenotypic polarization through inhibition of the TLR4/TRIF/MyD88 signaling pathway.


Asunto(s)
Terapia por Acupuntura , Lesiones Traumáticas del Encéfalo , Ratas , Animales , Masculino , Microglía , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Factor 88 de Diferenciación Mieloide/farmacología , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Ratas Sprague-Dawley , Enfermedades Neuroinflamatorias , Lesiones Traumáticas del Encéfalo/genética , Lesiones Traumáticas del Encéfalo/terapia , Lesiones Traumáticas del Encéfalo/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/farmacología
14.
bioRxiv ; 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38168194

RESUMEN

Germline BRCA2 loss-of function (LOF) variants identified by clinical genetic testing predispose to breast, ovarian, prostate and pancreatic cancer. However, variants of uncertain significance (VUS) (n>4000) limit the clinical use of testing results. Thus, there is an urgent need for functional characterization and clinical classification of all BRCA2 variants. Here we report on comprehensive saturation genome editing-based functional characterization of 97% of all possible single nucleotide variants (SNVs) in the BRCA2 DNA Binding Domain hotspot for pathogenic missense variants that is encoded by exons 15 to 26. The assay was based on deep sequence analysis of surviving endogenously targeted haploid cells. A total of 7013 SNVs were characterized as functionally abnormal (n=955), intermediate/uncertain, or functionally normal (n=5224) based on 95% agreement with ClinVar known pathogenic and benign standards. Results were validated relative to batches of nonsense and synonymous variants and variants evaluated using a homology directed repair (HDR) functional assay. Breast cancer case-control association studies showed that pooled SNVs encoding functionally abnormal missense variants were associated with increased risk of breast cancer (odds ratio (OR) 3.89, 95%CI: 2.77-5.51). In addition, 86% of tumors associated with abnormal missense SNVs displayed loss of heterozygosity (LOH), whereas 26% of tumors with normal variants had LOH. The functional data were added to other sources of information in a ClinGen/ACMG/AMP-like model and 700 functionally abnormal SNVs, including 220 missense SNVs, were classified as pathogenic or likely pathogenic, while 4862 functionally normal SNVs, including 3084 missense SNVs, were classified as benign or likely benign. These classified variants can now be used for risk assessment and clinical care of variant carriers and the remaining functional scores can be used directly for clinical classification and interpretation of many additional variants. Summary: Germline BRCA2 loss-of function (LOF) variants identified by clinical genetic testing predispose to several types of cancer. However, variants of uncertain significance (VUS) limit the clinical use of testing results. Thus, there is an urgent need for functional characterization and clinical classification of all BRCA2 variants to facilitate current and future clinical management of individuals with these variants. Here we show the results from a saturation genome editing (SGE) and functional analysis of all possible single nucleotide variants (SNVs) from exons 15 to 26 that encode the BRCA2 DNA Binding Domain hotspot for pathogenic missense variants. The assay was based on deep sequence analysis of surviving endogenously targeted human haploid HAP1 cells. The assay was calibrated relative to ClinVar known pathogenic and benign missense standards and 95% prevalence thresholds for functionally abnormal and normal variants were identified. Thresholds were validated based on nonsense and synonymous variants. SNVs encoding functionally abnormal missense variants were associated with increased risks of breast and ovarian cancer. The functional assay results were integrated into a ClinGen/ACMG/AMP-like model for clinical classification of the majority of BRCA2 SNVs as pathogenic/likely pathogenic or benign/likely benign. The classified variants can be used for improved clinical management of variant carriers.

15.
Front Genet ; 13: 1014947, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36276986

RESUMEN

Causal variants for rare genetic diseases are often rare in the general population. Rare variants may also contribute to common complex traits and can have much larger per-allele effect sizes than common variants, although power to detect these associations can be limited. Sequencing costs have steadily declined with technological advancements, making it feasible to adopt whole-exome and whole-genome profiling for large biobank-scale sample sizes. These large amounts of sequencing data provide both opportunities and challenges for rare-variant association analysis. Herein, we review the basic concepts of rare-variant analysis methods, the current state-of-the-art methods in utilizing variant annotations or external controls to improve the statistical power, and particular challenges facing rare variant analysis such as accounting for population structure, extremely unbalanced case-control design. We also review recent advances and challenges in rare variant analysis for familial sequencing data and for more complex phenotypes such as survival data. Finally, we discuss other potential directions for further methodology investigation.

16.
Nat Commun ; 13(1): 2592, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35545612

RESUMEN

Sequencing cases without matched healthy controls hinders prioritization of germline disease-predisposition genes. To circumvent this problem, genotype summary counts from public data sets can serve as controls. However, systematic inflation and false positives can arise if confounding factors are not controlled. We propose a framework, consistent summary counts based rare variant burden test (CoCoRV), to address these challenges. CoCoRV implements consistent variant quality control and filtering, ethnicity-stratified rare variant association test, accurate estimation of inflation factors, powerful FDR control, and detection of rare variant pairs in high linkage disequilibrium. When we applied CoCoRV to pediatric cancer cohorts, the top genes identified were cancer-predisposition genes. We also applied CoCoRV to identify disease-predisposition genes in adult brain tumors and amyotrophic lateral sclerosis. Given that potential confounding factors were well controlled after applying the framework, CoCoRV provides a cost-effective solution to prioritizing disease-risk genes enriched with rare pathogenic variants.


Asunto(s)
Esclerosis Amiotrófica Lateral , Neoplasias , Adulto , Esclerosis Amiotrófica Lateral/genética , Niño , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Neoplasias/genética
17.
Blood Adv ; 5(14): 2839-2851, 2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34283174

RESUMEN

Individuals with monogenic disorders can experience variable phenotypes that are influenced by genetic variation. To investigate this in sickle cell disease (SCD), we performed whole-genome sequencing (WGS) of 722 individuals with hemoglobin HbSS or HbSß0-thalassemia from Baylor College of Medicine and from the St. Jude Children's Research Hospital Sickle Cell Clinical Research and Intervention Program (SCCRIP) longitudinal cohort study. We developed pipelines to identify genetic variants that modulate sickle hemoglobin polymerization in red blood cells and combined these with pain-associated variants to build a polygenic score (PGS) for acute vaso-occlusive pain (VOP). Overall, we interrogated the α-thalassemia deletion -α3.7 and 133 candidate single-nucleotide polymorphisms (SNPs) across 66 genes for associations with VOP in 327 SCCRIP participants followed longitudinally over 6 years. Twenty-one SNPs in 9 loci were associated with VOP, including 3 (BCL11A, MYB, and the ß-like globin gene cluster) that regulate erythrocyte fetal hemoglobin (HbF) levels and 6 (COMT, TBC1D1, KCNJ6, FAAH, NR3C1, and IL1A) that were associated previously with various pain syndromes. An unweighted PGS integrating all 21 SNPs was associated with the VOP event rate (estimate, 0.35; standard error, 0.04; P = 5.9 × 10-14) and VOP event occurrence (estimate, 0.42; standard error, 0.06; P = 4.1 × 10-13). These associations were stronger than those of any single locus. Our findings provide insights into the genetic modulation of VOP in children with SCD. More generally, we demonstrate the utility of WGS for investigating genetic contributions to the variable expression of SCD-associated morbidities.


Asunto(s)
Anemia de Células Falciformes , Hemoglobina Fetal , Anemia de Células Falciformes/complicaciones , Anemia de Células Falciformes/genética , Niño , Hemoglobina Fetal/genética , Humanos , Estudios Longitudinales , Dolor , Polimorfismo de Nucleótido Simple
18.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34099548

RESUMEN

Improvements in whole genome amplification (WGA) would enable new types of basic and applied biomedical research, including studies of intratissue genetic diversity that require more accurate single-cell genotyping. Here, we present primary template-directed amplification (PTA), an isothermal WGA method that reproducibly captures >95% of the genomes of single cells in a more uniform and accurate manner than existing approaches, resulting in significantly improved variant calling sensitivity and precision. To illustrate the types of studies that are enabled by PTA, we developed direct measurement of environmental mutagenicity (DMEM), a tool for mapping genome-wide interactions of mutagens with single living human cells at base-pair resolution. In addition, we utilized PTA for genome-wide off-target indel and structural variant detection in cells that had undergone CRISPR-mediated genome editing, establishing the feasibility for performing single-cell evaluations of biopsies from edited tissues. The improved precision and accuracy of variant detection with PTA overcomes the current limitations of accurate WGA, which is the major obstacle to studying genetic diversity and evolution at cellular resolution.


Asunto(s)
Variación Genética , Genoma Humano , Técnicas de Amplificación de Ácido Nucleico , Análisis de la Célula Individual , Moldes Genéticos , Emparejamiento Base/genética , Sistemas CRISPR-Cas/genética , Línea Celular Tumoral , Humanos , Mutágenos/metabolismo , Polimorfismo de Nucleótido Simple/genética
19.
Cancer Res ; 81(9): 2442-2456, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33637564

RESUMEN

The TP53-R337H founder mutation exists at a high frequency throughout southern Brazil and represents one of the most common germline TP53 mutations reported to date. It was identified in pediatric adrenocortical tumors in families with a low incidence of cancer. The R337H mutation has since been found in association with early-onset breast cancers and Li-Fraumeni syndrome (LFS). To study this variability in tumor susceptibility, we generated a knockin mutant p53 mouse model (R334H). Endogenous murine p53-R334H protein was naturally expressed at high levels in multiple tissues and was functionally compromised in a tissue- and stress-specific manner. Mutant p53-R334H mice developed tumors with long latency and incomplete penetrance, consistent with many human carriers being at a low but elevated risk for cancer. These findings suggest the involvement of additional cooperating genetic alterations when TP53-R337H occurs in the context of LFS, which has important implications for genetic counseling and long-term clinical follow-up. SIGNIFICANCE: A p53-R334H knockin mouse serves as an important model for studying the most common inherited germline TP53 mutation (R337H) that is associated with variable tumor susceptibility.


Asunto(s)
Modelos Animales de Enfermedad , Células Germinativas/metabolismo , Mutación de Línea Germinal , Síndrome de Li-Fraumeni/genética , Ratones/genética , Mutación Missense , Penetrancia , Proteína p53 Supresora de Tumor/genética , Animales , Brasil/epidemiología , Células Cultivadas , Femenino , Fibroblastos/metabolismo , Técnicas de Sustitución del Gen , Predisposición Genética a la Enfermedad , Síndrome de Li-Fraumeni/epidemiología , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos
20.
EMBO Mol Med ; 13(1): e12595, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33270986

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a multi-system disease characterized primarily by progressive muscle weakness. Cognitive dysfunction is commonly observed in patients; however, factors influencing risk for cognitive dysfunction remain elusive. Using sparse canonical correlation analysis (sCCA), an unsupervised machine-learning technique, we observed that single nucleotide polymorphisms collectively associate with baseline cognitive performance in a large ALS patient cohort (N = 327) from the multicenter Clinical Research in ALS and Related Disorders for Therapeutic Development (CReATe) Consortium. We demonstrate that a polygenic risk score derived using sCCA relates to longitudinal cognitive decline in the same cohort and also to in vivo cortical thinning in the orbital frontal cortex, anterior cingulate cortex, lateral temporal cortex, premotor cortex, and hippocampus (N = 90) as well as post-mortem motor cortical neuronal loss (N = 87) in independent ALS cohorts from the University of Pennsylvania Integrated Neurodegenerative Disease Biobank. Our findings suggest that common genetic polymorphisms may exert a polygenic contribution to the risk of cortical disease vulnerability and cognitive dysfunction in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Disfunción Cognitiva , Demencia Frontotemporal , Enfermedades Neurodegenerativas , Esclerosis Amiotrófica Lateral/genética , Disfunción Cognitiva/genética , Humanos , Aprendizaje Automático
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...